CIRDC: TEACHING AN OLD DOG NEW TRICKS

Jessica Pritchard, VMD, DACVIM (SAIM)
Clinical Instructor, SAIM, UW-Madison SVM

Outline

• Etiology
 • Old standbys: CAV-2, CHV-1, CDV, CPiV, Bordetella bronchiseptica
 • New additions: CRCoV, canine pneumovirus, CIV, Streptococcus equi subsp zooepidemicus, Mycoplasma cynos
• Clinical Features
 • Signs
 • Physical examination findings
 • Diagnosis
 • Performing airway washes
 • Treatment & Prognosis
 • Prevention

In the beginning there was adenovirus

• “Canine laryngotracheitis may be caused by a viral agent or agents…”
• Adenovirus first implicated in groups of dogs 1961 in Canada
 • Research colony of dogs
 • All recovered

What’s in a name?

• Infectious laryngotracheitis
• Infectious tracheobronchitis (ITB)
• Kennel cough
• Canine infectious respiratory disease complex (CIRDC)

Who is at risk?

• Dogs housed indoors together in large groups
 • Shelters
 • Commercial dog colonies
 • Breeding facilities
 • Large rescues
• Dogs with active social lives
 • Dog daycare
 • Dog parks
 • Sporting events (agility, flyball, etc.)
 • Boarding facilities
 • Training classes
Canine Adenovirus-2
- DNA virus (nonenveloped)
- Worldwide distribution
- Replicates throughout upper and lower respiratory tracts
- Survival in the environment longterm (weeks to months)
- Shedding for 1-2 weeks

Canine Herpesvirus-1
- Role in CIRDC debated
- Experimentally rhinitis, tracheobronchitis, conjunctivitis
- Dogs with CHV-1 may be more likely to have severe disease
- Many latent infections so maybe just shedding

Canine Distemper Virus
- RNA virus (enveloped)
- Closely related to human measles
- Many geographic lineages
- Survives less than a day at room temperature
- Shedding for weeks to months

Canine Parainfluenza Virus
- RNA virus (enveloped)
- Replicates in the upper respiratory tract
 - Often no signs or very mild infection
 - Problem with co-infections
- Poor environmental survival (hours)
- Shedding for 8-10 days

Bordetella bronchiseptica
- Gram negative coccobacilli
 - Adheres to cilia via fimbrial adhesins
 - Relative of *B. parapertussis* (Whooping Cough) in humans
- Common cause of bacterial pneumonia in young dogs
 - 49% of dogs <1yr in one study
- Can survive and grow in environmental water for weeks
 - Persists outside water at least 10 days
- Shedding for months

Canine Respiratory Coronavirus
- First described in 2003 in a shelter in the UK
- Primarily upper respiratory tract cells infected
- Most frequently found with CPIV and *Bordetella*
- Environmental survival is short (hours)
- Shedding for 6-8 days
Canine Pneumovirus
- Described in 2010 in a study of shelter dogs in the US
- Closely related to human and bovine respiratory syncytial virus
- Uncertain role in etiology of CIRDC

Canine Influenza Virus
- Type A affect animals
- Further classified based on hemagglutinin (H) and neuraminidase (N) genes
- Most have been shelter/kennel situations
- Shedding highest during the incubation period
- May continue up to 7 days into illness
- Approximately 20% infected show no clinical signs
- Short environmental survival (hours)
 - Surfaces 48h
 - Clothing 24h
 - Hands 12h

Canine Influenza Virus
- H3N2 recently

CIV H3N2 overall

Streptococcus equi subsp zooepidemicus
- Beta-hemolytic Lancefield group C, distinct from S. canis (group G)
- Commensal organism in the upper respiratory and lower genital tracts of horses
 - Can occasionally be opportunistic pathogen
- Sporadic disease in dogs since the 1970s
 - Occasional reports of primarily upper respiratory tract signs
- Recently outbreaks of acute, sometimes fatal hemorrhagic pneumonia
 - Often in kenneled and racing dogs
Mycoplasma cynos

- Lack cell walls, smallest free-living organisms
- Study evaluating *Mycoplasma* spp. in dogs with respiratory disease in 2004
- Only *M. cynos* was significantly associated with disease

Recap of organisms and what we know

<table>
<thead>
<tr>
<th>Organism</th>
<th>Incubation period (days)</th>
<th>Shedding period</th>
<th>Environmental survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV-2</td>
<td>3 to 6</td>
<td>1 to 2 weeks</td>
<td>Weeks to months</td>
</tr>
<tr>
<td>CHV-1</td>
<td>6 to 10 or longer</td>
<td>Unknown</td>
<td>Hours</td>
</tr>
<tr>
<td>CPV</td>
<td>3 to 8</td>
<td>Weeks to months</td>
<td>Hours</td>
</tr>
<tr>
<td>Bordetella</td>
<td>2 to 6</td>
<td>Months</td>
<td>Potentially long</td>
</tr>
<tr>
<td>CRCoV</td>
<td>Probably days</td>
<td>6 to 8 days</td>
<td>Hours</td>
</tr>
<tr>
<td>Pneumovirus</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Hours</td>
</tr>
<tr>
<td>CIV</td>
<td>2 to 4</td>
<td>7 to 10 days</td>
<td>Hours</td>
</tr>
<tr>
<td>S. zooepidemicus</td>
<td>Probably days</td>
<td>At least 2 weeks</td>
<td>Unknown, weeks</td>
</tr>
<tr>
<td>M. cynos</td>
<td>3 to 10</td>
<td>Months</td>
<td>Hours</td>
</tr>
</tbody>
</table>

Transmission

- Typically aerosol
- Direct contact between dogs and fomites
- Important in crowded conditions
- Affects cells of larynx, trachea, bronchi and occasionally nasal mucosa
- Shedding can occur before clinical signs
- CIV and CPV shedding is short
- CDV shedding is long

Expected disease course

- Can range from no signs to complicated pneumonia and death
- Typically high morbidity, low mortality
- Who gets sick?
 - Moderate to severe signs more common in:
 - Young puppies
 - Genetically susceptible animals
 - Stressed animals
 - Co-infected animals
- Who gets secondary infections?
 - CDV (immunosuppressive)
 - CRCoV and CPV (damaged ciliated epithelial cells)

Physical examination findings

<table>
<thead>
<tr>
<th>Uncomplicated</th>
<th>Complicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAR</td>
<td>QAR to dull</td>
</tr>
<tr>
<td>Paroxysmal cough often elicited on tracheal palpation</td>
<td>Lethargic</td>
</tr>
<tr>
<td>Conjunctivitis, serous ocular/nasal discharge are possible</td>
<td>Febrile</td>
</tr>
<tr>
<td></td>
<td>Increased respiratory effort with increased lung sounds</td>
</tr>
<tr>
<td></td>
<td>Mucopurulent nasal discharge</td>
</tr>
</tbody>
</table>

Localizing respiratory disease

- Airway obstruction: inspiratory and/or expiratory stridor or stertor, upper airway prolonged inspiration, lower airway prolonged expiration, a lower respiratory rate
- Brachycephalic airway syndrome, laryngeal paralysis, inflammation or edema of the pharynx or larynx, airway infections and/or obstructions, foreign body, neoplasm, airway collapse, and bronchitis
Localizing respiratory disease

- Pulmonary parenchymal disease: often depressed; panting or breathing open-mouthed, with nostril flare, coughing, head and neck extension, anxiety, increased respiratory rate
 - Pneumonia, pulmonary edema (cardiogenic or non-cardiogenic), pulmonary contusions, aspiration pneumonia, fungal or viral infection, PTE, neoplasia, pulmonary fibrosis, and acute respiratory distress syndrome (ARDS)

- Pleural space disease: short, shallow restrictive breathing pattern, increased respiratory rate, nostril flaring, orthopnea, an abdominal component to respiration, and a reluctance to lie down
 - Pneumothorax and pleural effusions

- Thoracic wall abnormalities: often secondary to trauma
 - Look-alikes: hyperthermia, anemia, stress, abdominal distension, HAC, etc.

Clinical Signs - CDV

- CDV is shed in all secretions before clinical signs
 - Can be >14 days

- Many cases may be subclinical

- Transplacental transmission is possible

Clinical Signs - CDV

- Respiratory system
 - Fever
 - Oculonasal discharge
 - Cough
 - Conjunctivitis
 - Uveitis
 - Gastrointestinal
 - Diarrhea
 - Tenesmus

- CNS – 30%, 1-6 weeks post-infection
 - Myoclonus
 - Seizures
 - Skin
 - Papules and pustules
 - Teeth
 - Enamel hypoplasia
 - Bones
 - Metaphyseal osteosclerosis

Diagnosis

- Generally not possible with only clinical features
 - Exceptions: hyperkeratosis and chorioretinitis in CDV, dendritic corneal ulceration in CHV
Diagnosis
• Generally not possible with only clinical features
 • Exceptions: hyperkeratosis and chorioretinitis in CDV, dendritic corneal ulceration in CHV
 • History of exposure to other dogs increases suspicion
 • Noncontagious look-alikes:
 - Inflammatory airway disease
 - Respiratory tract neoplasia
 - Fungal pneumonia

Don’t ‘healthy’ dogs test positive?

PAPER
Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters

- 503 dogs in shelters in the US
- Testing of three swabs:
 - Dry conjunctival
 - Deep nasal
 - Deep pharyngeal
- IDEXX RealPCR: Bb, CAV-2, CDV, CHV, CIV H3N8, CPV, CRCoV, M. cynos, S. equi zooepidemicus

Yes they do!

| Table 1: Number of different canine infectious respiratory disease (CIRD) pathogens detected in asymptomatic dogs by geographic region and total study population |
|---|----------------|----------------|----------------|----------------|
| Pathogen | East | Midwest | South | Total |
| Number of dogs | 5 | 1 | 5 | 11 |
| Bacteroides infection (n=6) | 5 | 1 | 5 | 11 |
| A pneumonia in one dog | 3.5 | 0.5 | 3.5 | 7.5 |
| A pneumonia for three pathogens (n=1) | 2.8 | 0.6 | 2.8 | 5.4 |
| A pneumonia for four pathogens (n=0) | 0.4 | 0.1 | 0.4 | 0.4 |
| A pneumonia for five pathogens (n=1) | 9.6 | 1.2 | 9.6 | 9.6 |
| A pneumonia for six pathogens (n=0) | 0 | 0 | 0 | 0 |
| CIRD agents in ‘healthy’ shelter dogs |

CIRD agents in ‘healthy’ shelter dogs

- Attempts to gain a diagnosis should be made
 - Illness longer than 7-10d
 - Secondary bacterial pneumonia is suspected
 - Outbreaks in shelters, colonies, rescues

How do we get a diagnosis?
CIRDC Diagnostics

- Lack of specific abnormalities in CBC, serum chemistry or UA
- Thoracic radiographs
 - Often normal if uncomplicated → mild diffuse bronchointerstitial or interstitial pattern
 - Complicated → peribronchial infiltrates, consolidation, alveolar infiltrates

Timeline of Disease & Diagnostics

0 Exposure → Multiplication and shedding → 5 Clinical disease → 10 Antibody titer increases → 15

Virus Isolation

- Offered by laboratories that specialize in virology
- Animal Health Diagnostic Laboratory at Cornell University
- Specimens: nasal and pharyngeal swabs, airway wash samples, tissue from necropsy
- Do not use cotton swabs as influenza may adhere
- Highly specific, poorly sensitive
- Takes several days and specialized laboratory

PCR

- Detects organism
- Useful in acute disease or exposed dogs not yet ill
- Recall timeline
- PCR Panels
 - Often include both viral and bacterial pathogens
 - Subclinical shedding?
- Specificity > Sensitivity
 - Transient or low shedding
 - RNA more labile than DNA
 - May detect attenuated live vaccine

IFA

- Most commonly used with CDV
- Usually cytologic smears from conjunctival, tonsillar, genital, or respiratory epithelium
- Also: CSF, buffy coat (Day 3), urine sediment, marrow

CIRDC Diagnostics

- Virus Isolation
- PCR
- ELISA
- Serology
- Culture and cytology
- Airway sampling

Green's Infectious Diseases of the Dog and Cat 4th Ed. P. 35
ELISA

- Point of care ELISAs for human Influenza A viruses
- Easily performed with rapid results
- Limited sensitivity and specificity → this should not be the only test you submit!

Interpreting Antigen Detection Assays

<table>
<thead>
<tr>
<th>Ag Test Result</th>
<th>Possible explanation</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Pathogen not present</td>
<td>Confirm with alternate test (i.e. Ab or PCR assay)</td>
</tr>
<tr>
<td></td>
<td>Antigen present below limit of detection</td>
<td>Consider Ab or PCR assay</td>
</tr>
<tr>
<td></td>
<td>Antigen-Antibody complexes present</td>
<td>Consider Ab or PCR assay</td>
</tr>
<tr>
<td>Positive</td>
<td>Pathogen present</td>
<td>If low prevalence confirm with additional test, presence does not guarantee causation</td>
</tr>
<tr>
<td></td>
<td>Antigen present, viable microbe absent</td>
<td>Confirm with additional test</td>
</tr>
<tr>
<td></td>
<td>Vaccine antigen present</td>
<td>Obtain vax history, confirm with discriminatory test</td>
</tr>
<tr>
<td></td>
<td>Cross-reactive antigen present from another substance/pathogen</td>
<td>Consider likelihood of alternative infection</td>
</tr>
</tbody>
</table>

Serology

- May be complicated by previous vaccination
- Need acute and convalescent serology to definitively diagnose
- A good option when past the initial illness for viruses like CIV

Interpreting Antibody Detection Assays

<table>
<thead>
<tr>
<th>Ab Test Result</th>
<th>Possible explanation</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Exposure to pathogen didn't occur</td>
<td>Confirm with additional test if necessary</td>
</tr>
<tr>
<td></td>
<td>Severe immunosuppression</td>
<td>Consider antigen or PCR test</td>
</tr>
<tr>
<td></td>
<td>Too early in disease course</td>
<td>Convalescent titer; use Ag-based test for early diagnosis</td>
</tr>
<tr>
<td>Positive</td>
<td>Previous natural exposure to Ag</td>
<td>If chronic infection, test results may be correct</td>
</tr>
<tr>
<td></td>
<td>Previous immunization against pathogen</td>
<td>Obtain vax history, use discriminatory test if available</td>
</tr>
<tr>
<td></td>
<td>Immunologic cross-reactivity</td>
<td>Obtain vax history and consider likelihood of previous exposure</td>
</tr>
</tbody>
</table>

Bacterial Culture

- Useful in secondary infections
- Standard bacterial culture and *Mycoplasma* culture as well
- Several options for obtaining cultures for sample:
 1. Transtracheal wash
 2. Endotracheal wash
 3. Bronchoalveolar lavage

Which wash to choose?

- Transtracheal wash
 - Dogs >10kg
 - No anesthesia
 - Many will need sedation
 - Maintain cough reflex
 - Not technically demanding

- Endotracheal Wash
 - Dogs and cats <10kg
 - Fractious animals or those resistant to restraint
 - Anesthesia required
 - Easy to perform
Airway washes

Transtracheal wash

- Dog positioned in sternal recumbency
- Clip skin over larynx
- Lidocaine infiltrated into the skin and subcutaneous tissue
 - Over cricothyroid ligament (cranial to the cricoid cartilage)
- Stab incision in skin

Direct bevel of through-the-needle catheter downward and into trachea
- Infuse 3-5 aliquots (5-10ml sterile saline)
- Submit for wash analysis and cultures

Endotracheal wash

- Induce anesthesia
- Pass a sterile endotracheal tube
- Pass 5- to 8-Fr red rubber catheter to approximately the carina
- Infuse and aspirate sterile saline aliquots (3-10ml)

Airway wash troubleshooting

- Catheter long enough?
 - Problem with giant breeds and TTW
 - Can also be problem with ETW
- Catheter coughed into oral cavity?
 - See saline coming out of mouth or nares
- Catheter subcutaneous?

Treatment

- CIRDC will resolve without specific treatment in the majority of dogs
 - BAR dogs with signs present less than 7-10d = no treatment necessary
 - Cough may persist up to a month in some dogs
Treatment

- Consider if signs are present > 7-10d.
- Primarily for secondary bacterial pneumonia
 - Radiographs
 - Airway wash and cytology
 - Culture and sensitivity

Treatment - Antibiotics

- If strong suspicion of *Bordetella* doxycycline is first choice antibiotic
- If severe begin treatment with combination fluoroquinolone and penicillin or clindamycin
 - Descalate once results of culture have returned
- Treatment of *Mycoplasma* with doxycycline or fluoroquinolones
 - Avoid: beta-lactams, TMS, rifampin, macrolides
 - Duration: variable, repeat radiographs, wash, etc.

Treatment - Antivirals

- Typically secondary bacterial infection requiring treatment
- Ethics regarding the use of neuraminidase inhibitors in dogs
 - Influenza A viruses readily develop resistance to antiviral drugs
 - Efficacy concerns
 - Timing concerns
 - Amantadine in H5N1 outbreak

Treatment – Antivirals in CIV

- Examined antiviral activity of nitazoxanide (NTZ) and tizoxanide (TIZ) against three CIV isolates in vitro
 - Interferes with viral glycoprotein assembly
 - NTZ > TIZ
 - Complete inhibition of replication at 5 µM, partial at 1-2 µM

Treatment – Antivirals in CDV

- Combination of RBV and IFNa exhibited antiviral activity for the intracellular stages of the replicative cycle of CDV
 - RBV and IFNa showed high antiviral efficacy against CDV

Treatment – Supportive Care

- May require additional supportive care
 - Intravenous fluids
 - Oxygen
 - Nebulization
 - Coupage
Prognosis – General CIRDC

- Generally excellent in dogs with single organism
- Recall shedding lengths when making recommendations for return to normal activity
- Consider when to repeat diagnostics and stop antibiotics

Prognosis - CIV

- Infectivity rate at least 80%
- No historical immunity to similar infection
- Of those, 75% show clinical signs
- So, 25% shedding but no clinical signs at all
- CIV mortality is low by all estimates
- May be lower with earlier diagnosis and in the pet population
- Many estimate 1-5%

Prognosis - CDV

- Fatal in 50% of adult cases and up to 80% of puppies
- Fatality often due to neurologic involvement

Prevention – Immunity & Vaccines

- Vaccines lessen the severity of disease and shedding
- Except CDV → prevents disease
- Most dogs receive DA2PP
- Parental and mucosal attenuated live CAV-2 and CPIV

Vaccination

- JAVMA 2005: vaccine-associated adverse events in 0.3% (86/28,852)
- Consider what was a VAAE

Understanding vaccine labels
Prevention – *Bordetella bronchiseptica*

- **Mucosal**
 - *Bordetella avirulent live, mucosal (intranasal or oral)*
 - Stimulate mucosal immunity within 3 days
 - Occurs in the face of maternal antibody
 - Can cause transient illness

- **Parenteral**
 - Inactivated parenteral *Bordetella* vaccines
 - Two doses 3-4 weeks apart
 - Maximum immunity 1 week after second dose
 - May be useful for aggressive dogs or those on antibiotics

Prevention – Canine Influenza

- Canine H3N8 vaccine is intended as an aid in the control of disease associated with CIV
- Subcutaneous – two injections 2-4 weeks apart

Prevention

- Not just vaccination!
- Appropriate quarantine
- Early identification
- Proper training of personnel
- Avoidance of overcrowding
- Fomite control
- Proper ventilation and cleaning

Questions?