MANAGEMENT OF METHICILLIN-RESISTANT STAPHYLOCOCCAL SKIN INFECTIONS

Karen L. Campbell, DVM, MS, DACVIM, DACVD
Professor Emerita, University of Illinois
Clinical Professor of Dermatology, University of Missouri
Normal Cutaneous Flora

- Resident Bacteria
 - have the ability to live and multiply on the skin
 - persist for long periods of time
 - May overgrow and cause infection when conditions are favorable

- Dogs
 - *Staphylococcus pseudintermedius*
 - *Staphylococcus schleiferi*
 - Other *Staphylococcus* spp

- Cats
 - *Pasteurella multocida*
 - *Staphylococcus aureus*
 - *Staphylococcus pseudintermedius*
 - Other *Staphylococcus* spp
Infection vs. colonization?

• Signs of infection include:
 • consistent skin lesions
 • cocci in intact pustules
 • intracellular cocci
 • degenerate neutrophils
Pyoderma

• “pus in the skin”
• Most common organisms for dogs
 • *Staphylococcus pseudintermedius*
 • Other *Staphylococci*
 • Occasionally *Proteus* or *Pseudomonas*
• Cats
 • *Pasteurella multocida* (abscesses)
 • *S. aureus*
 • *S. pseudintermedius*
Pathogenesis: Predisposing Factors
These need to be looked for in ALL cases

- Trauma
- Xerosis (dry skin/coat)
- Ectoparasites
- Poor grooming
- Endocrine diseases
- Allergies
- Poor nutrition
- Underlying systemic disease
- Impaired immunity
- Anatomical defects
- Medications
Principles of Treatment: Bacterial Pyoderma

• Systemic Antibiotics
 • Effective against specific bacteria
 • Tissue distribution to the skin
 • Minimum side effects
 • Easy to give, reasonable cost
 • Continue treatment 1-2 weeks beyond clinical cure (THIS IS VERY IMPORTANT to minimize risk of reoccurrence)

• Cultures
 • Cases that do not improve with empirical treatment
 • Reoccurrences within 6 months
 • Immunocompromised pet or family member
What to culture

• Pustules
• Under epidermal collarettes or crusts (sterile blade to scrape)
• FNA of cellulitis or deep infections
• Material expressed from tracts after cleaning surface
• Skin biopsies
Review of Beta-Lactam Antibiotics

- Antibiotics that contain a beta-lactam ring
 - Penicillins
 - Beta-lactamase inhibitors
 - Cephalosporins
 - Carbapenems
- Bacteriocidal
 - Inhibit synthesis of peptidoglycans in bacterial cell wall
Penicillins
Oxacillin

- Bactericidal
- Binds to penicillin-binding proteins in bacterial cell wall
- Time dependent drug (time above MIC)
- Is resistant to beta-lactamase, therefore effective for most species of *Staphylococcus* + many Gram negative organisms
- Food interferes with absorption (give on empty stomach)
- Dogs and Cats
 - 22-40 mg/kg q 8 hr PO
Cephalosporins

• 1st isolated from cultures of *Cephalosporin acremonium*

• Bacteriocidal, disrupt the synthesis of peptidoglycan layer of bacterial cell walls

• Bind to bacterial penicillin-binding proteins (transpeptidase & carboxypeptidase)
Beta-Lactam Antibiotics

- Bacterial resistance
 - Bacterial production of Beta-lactamase or penicillinase
 - Bacteria with alterations in penicillin-binding protein
 - MecA gene transmits this form of resistance
“History of Staphylococcal infections in dogs”

- Prior to mid-70’s coagulase positive staphylococci were presumed to be S. aureus
- *S. intermedius* first described in 1976 as most common isolate from canine pyoderma
- Molecular techniques in 2006 reported the SIG group contains
 - *S. intermedius*
 - *S. pseudointermedius*
 - *S. delphini*
S. pseudintermedius in normal dogs

- **S. pseudintermedius**
 - Normal flora of nares, mouth, pharynx, forehead, groin and anus of dogs
 - Nares and anus have largest #s
Virulence factors of *S. pseudintermedius*

- Produces many enzymes
 - Coagulase
 - Proteases
 - Thermonuclease
 - Haemolysins
 - Exfoliative toxins
 - Enterotoxins
 - Leukotoxin (Luk-1)

- Binds to
 - Fibrinogen
 - Fibronectin
 - Cytokeratin

- Produces staphylococcal protein A (spa) binds to Iggs

- Some strains produce biofilms
Methicillin - Resistance

• mecA gene
 • encodes production of modified PBP
 • Located on Staphylococcal chromosomal cassette

• Oxacillin susceptibility correlates well with mecA status

• Oxacillin is more stable than methicillin
Methicillin Resistance

• Prevalence of MRSP
 • 0-4.5% general population
 • 0-7% of dogs with skin disease
 • 15-17% of dogs cultured for skin infections
 • As high as 30% of cases submitted to some laboratories (2008 – UT)
 • 2010 Japanese study – 67% of dogs with pyoderma
Methicillin Resistance

- Most North American MRSP are of ST68 clonal lineage
- Most European MRSP are of ST71 clonal lineage
- Multidrug resistance varies with location
 - USA – 50% susceptible to chloramphenicol
 - Europe – 10% susceptible to chloramphenicol
Methicillin Resistance

- Risk factors for MRSP (dogs)
 - Urban dogs
 - Systemic antibiotics within past year
- Risk factors for MRSA (dogs)
 - Recent treatment with FQs or B-lactams
 - Multiple courses of antibiotics
 - Multiple-day hospitalization
 - Surgical implants
 - Intravenous catheters
 - Contact with people who are sick or who have been hospitalized
Methicillin Resistance

• *Staphylococcus schleiferi*
 • Subspecies *schleiferi* (coagulase negative)
 • Subspecies *coagulans* (coagulase positive)
 • MR > 50%
 • Risk factor for MRSS—recent (30 d to 6 month prior) treatment with a B-lactam antibiotic
Other resistance genes

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Resistance breakpoint</th>
<th>% of resistant isolates</th>
<th>Resistance genes involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>≥ 8</td>
<td>89</td>
<td>erm (B)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>≥ 4</td>
<td>89</td>
<td>Erm (b), Inu (A)</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>≥ 16</td>
<td>90</td>
<td>dfrG</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≥ 4</td>
<td>87</td>
<td>ND</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>≥ 16</td>
<td>70</td>
<td>aac(6’)-le-aph(2’)-Ia</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>≥ 16</td>
<td>70</td>
<td>tet(M); tet (K)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>≥ 32</td>
<td>57</td>
<td>cat</td>
</tr>
</tbody>
</table>

J Antimicrob Chemother 2011; 66: 2705 –2714
Risk for humans

- Carriage of MRSP in people
 - 1/242 humans + living with a dog
 - 1/20 staff members + in a veterinary clinic
 - 7.9% of staff in a veterinary academic hospital + in 2008
 - 2/25 owners + during time dog culture positive, all negative following successful treatment of their dogs
 - 5.3% of staff in veterinary dermatology practices +
Methicillin-resistant *Staphylococcus aureus* (MRSA) in Veterinarians

- Emerging as a problem in vet med
- MRSA carriage 1.3% in US population
- Human health care workers ↑ risk
- 13% of veterinary personal working with USA strain
 500 infected horses identified as carriers
- 6.5% of veterinarians screened at 2005 ACVIM Forum identified as carriers
 - 15.6% of large animal vets were carriers
 - 4.4% of small animal vets were carriers
Superficial Bacterial Folliculitis

- ** *S. pseudintermedius***
 - different strains may be present on one animal
 - produce enterotoxins (A, B, C, D), toxic shock protein, Protein A, hemolysins, and slime
 - not very virulent, so cutaneous infection is usually DUE TO AN UNDERLYING DISORDER
 - Methicillin resistant strains are increasing
 - Culture recurrent cases
- Other bacteria sometimes involved
 - *S. aureus (may be a reverse zoonosis)*
 - *S. schelferi*
Superficial Bacterial Folliculitis

• Generally are secondary infections:
 Underlying causes may include
 • hypersensitivity disorders
 • keratinization disorders
 • metabolic diseases
 • immune deficiency
 • follicular diseases
 • miscellaneous:
 trauma, dry skin, poor grooming...
Methicillin Resistant Staphylococcus aureus in dogs

This dog was successfully treated with the combination of rifampin + Ciprofloxacin for 16 weeks
Treatment of Methicillin Resistant Infections

• Antibiotic options MAY include (culture STRONGLY recommended)
 • Potentiated sulfonamides
 • Clindamycin
 • Fluoroquinolones
 • Chloramphenicol
 • Rifampin
 • Amikacin
Potentiated Sulfanomides

• Synergistic inhibition of folic acid synthesis in bacteria and protozoa

• Side effects may include keratoconjunctivitis sicca, iatrogenic hypothyroidism, drug hypersensitivity reactions (polyarthritis), anemia, thrombocytopenia, vomiting, diarrhea

• Are effective in some animals with MRSA
Potentiated Sulfanomides

- Ormetoprim-sulfadimethoxine and Baquiloprim-sulfadimethoxine
 - Dogs 27.5 mg/kg q 24 hr (double dose the first day)
- Trimethoprim-sulfadiazine and Trimethoprim-sulfamethoxazole
 - Dogs 30 mg/kg q 24 (or 15 mg/kg q 12 hr)
 - Cats 15 mg/kg q 12 hr (give with 2.5 mg/kg/day folinic acid to prevent anemia)
- Monitor tear production and blood counts
- If giving long-term consider giving thyroid hormone supplements
Clindamycin

• Dogs and Cats
 • 11 mg/kg q 12 hr
• Penetrates well into areas of fibrosis
• *Staphylococci* may be resistant; culture recommended
Fluoroquinolones

- Bacteriocidal antibiotics
 - Inhibit DNA gyrase or topoisomerase IV enzymes thereby preventing DNA transcription
- Examples
 - Ciprofloxacin
 - Enrofloxacin
 - Marbofloxacin
 - Orbifloxacin
 - Difloxacin
 - Sarafloxacin
- Contraindicated in young animals (cartilage damage)
Ciprofloxacin

- Variable absorption in dogs and low absorption in cats
 - Avoid giving with food
 - Do not give with antacids or sucralfate
- Dogs 10-40 mg/kg q 24 hours
- Cats 20 mg/kg q 24 hours
Enrofloxacin

- Well absorbed and converted into ciprofloxacin
- Concentrates in phagocytes which carry to sites of inflammation
- Cats treated at doses above 5 mg/kg may have damage to retinas
- Dogs 5 mg/kg q 24 hours for *Staphylococci*, 11-20 mg/kg for *Pseudomonas*
Marbofloxacin

- Concentrates intracellularly
- Poor activity against *Streptococci* and anaerobes
- Dogs and Cats
 - 2.75-5.5 mg/kg q 24 h
Orbifloxacin

- High absorption
- Effective against many Gram positive and Gram negative organisms, NOT for anaerobes
- May predispose to seizures
- High doses may cause retinal damage in cats
- Dogs and Cats
 - 5.0 -7.5 mg/kg q 24 hrs
Doxycycline

- High absorption especially when given with food
- Good tissue distribution
- Good activity against many intracellular pathogens including some mycobacteria
- Many staphylococci are resistant
- May cause esophageal irritations and strictures (especially in cats)
- Dogs 3-5 mg/kg q 12 hr
- Cats 5-10 mg/kg q 12 hr
Chloramphenicol

- Bacteriostatic
 - Binds to 50S ribosomes of bacteria inhibiting protein synthesis
- Lipid soluble with wide tissue distribution
- Good activity against many staphylococci (including many MRSA) and also against Gram negative, anaerobes, rickettsia and others
Chloramphenicol

- Cytochrome P-450 inhibitor (potential for drug interactions)
- Side effects: possible bone marrow suppression (do not use if FIV or FeLV cats, monitor CBCs in cats)
- GI upsets
- Rear limb weakness
- Contraindicated in pregnancy and in neonates
- Dogs 25-50 mg/kg q 8 hr
- Cats 50 mg/cat q 12 hr
Rifampin

• Binds to bacterial DNA-dependent RNA polymerase
• Excellent absorption
• Excellent tissue distribution
• Effective against *Staphylococci*, *Bartonella*, *Brucella*, and some *Mycobacterium* spp
• Resistance may develop rapidly; ideal to give with another antibiotic
• May cause reddish color to urine, saliva, tears and feces; possible hepatotoxicity –MONITOR LIVER PANEL every week!!!! Give with SAMe
• Dogs 10 mg/kg q 12 hr
• Cats 5-10 mg/kg q 24 hr
Aminoglycosides

• Derived from *Streptomyces*
• Bacteriocidal with multiple sites of action (bind 30S ribosomal unit, some also 50S subunit + 16S rRNA, inhibit protein synthesis and disrupt cell wall; also disrupt integrity of cell membranes)
• Have a post-antibiotic effect allowing prolonged intervals between doses
• Broad spectrum for Gram positive and negative organisms, not effective for anaerobes
• Must be given by injection
Aminoglycosides

- Nephrotoxic and ototoxic
- Not absorbed from intestines
- Synergistic with penicillins (however increased nephrotoxicity when given with cephalexin, increased ototoxicity when given with furosemide)
- Gentamicin
 - Dogs 4.4-6.6 mg/kg q 24 hr
 - Cats 2.2 mg/kg q 24 hr
- Amikacin
 - Dogs 7.5 mg/kg q 12 hr
 - Cats 5-10 mg/kg q 12 hr
- Monitor Urinalysis 1x-2x/week and renal panel
Adjuvants to Treating Infections

- Shampoos
 - Benzoyl peroxide
 - Chlorhexidine
 - Ethyl lactate
 - Monosaccharides

- Leave-on products
 - Chlorhexidine lotion or spray
 - Mupirocin cream
 - Benzoyl peroxide gel
Benzoyl peroxide

- Kills most bacteria and yeast
- Potent degreaser
- Suppresses sebaceous gland activity
- Oxidizer (bleaches fabrics, may be irritating)
- Follicle flusher (removes sebum, keratin and mites from hair follicles)
- Use with a moisturizer
Chlorhexidine

- Bactericidal through disruption of cell membranes
- Residual activity
 - 6 hours non-encapsulated
 - Up to 1 week with micro-emulsion spray
- Can cause corneal ulcers
- Ototoxic inside middle ear (do not use in ears if eardrum is ruptured!)
Mupiracin

- Bactericidal
- Binds to bacterial isoleucyl-tRNA synthetase
- Unique mechanism of action therefore no concern about cross-resistance with other antibiotics
- Only used topically
- Used in treatment of MRSA (including nasal treatment for human carriers)
Dakin’s Solution

• Start with ¼ strength solution
 • Final rinse after bath
 • Daily between baths

<table>
<thead>
<tr>
<th></th>
<th>¼ strength</th>
<th>½ strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleach</td>
<td>1.5 tablespoons</td>
<td>3 tablespoons</td>
</tr>
<tr>
<td>Water</td>
<td>1 quart</td>
<td>1 quart</td>
</tr>
<tr>
<td>Baking Soda</td>
<td>½ teaspoon</td>
<td>1 teaspoon</td>
</tr>
</tbody>
</table>
Immunostimulants

- Staphylococcal phage lysate
 - Stimulates production of interleukin-6 and interferon-gamma
 - Increases immune response against Staphylococci
 - Dogs 0.5 ml subcutaneous twice weekly for 10-12 weeks then every 1-2 weeks
Immunostimulants

• Alpha-interferon
 • May serve as a stimulus to improve immune responses
 • Low dose oral αIFN2a upregulates the production of interferon-γ, interleukin-12 (IL12), and IL18
 • enhances natural killer cell function & macrophage activity
 • upregulates MHC-1 & MHC-2 expression
 • upregulates cytotoxic T cell function and cellular immunity
 • increases production of immunoglobulins
 • Dose 1000 IU/dog q 24 hr (squirt directly in mouth)
Principles of Treatment

- systemic antibiotics for a minimum of 21 days
- treat 7-10 days past clinical cure
- avoid steroids
- Culture if suspect resistant bacteria may be present
- identify and treat underlying conditions
- topical medications: antiseptic shampoos, antimicrobial creams/gels
- MULTIMODAL TREATMENT
Methicillin-resistant *Staphylococcus* Infection Control Recommendations

- Implement infection control measures
 - Environmental hygiene
 - Hand washing
 - Barrier protection
 - Isolation facilities/procedures
 - Traffic pattern within hospital
 - Surveillance
 - Education
Preventing transmission of Methicillin Resistant Infections

• Contact—limit contact with infected individuals
• Contamination—minimize by use of disinfectants
• Compromised Skin—clean wounds promptly and cover open wounds
• Cleanliness—wash hands frequently
Thank you to Dechra for Sponsorship!

NAVDF provides up-to-date Dermatology CE (NAVDF.ORG) 2019 meeting in Austin, TX

WCVD9 in Sydney, Australia–an experience of a lifetime!

(October 20-24, 2020)
Karen L. Campbell, DVM, MS
Diplomate, American College of Veterinary Internal Medicine
Diplomate, American College of Veterinary Dermatology

University of Missouri Veterinary Health Center—Wentzville
1092 Wentzville Parkway
Wentzville, MO 63385

(636) 332-5041
(636) 327-6400 fax

campbellmotsingerk@missouri.edu

klcampbe@Illinois.edu