NIVMA 2025

- All About Opioids!
 Building Individualized Premedication Plans
 Non-Opioid Analgesics
 Managing Hypotension
 - CPR RECOVER updates

Cardiopulmonary Resuscitation

2024 RECOVER GUIDELINES

Steph Sharping, DVM, DVSc, DACVAA

Why are we here today?

- 30% of variability in patient survival is attributable to CPR training
 - Dane et al. Resuscitation, 47 (2000), pp. 83-87
- CPR skills deteriorate even in trained individuals
 - Anderson et al. Resuscitation, 135 (2019), pp. 153-161

We perform CPR

Overview and Objectives

- What are the **RECOVER** guidelines?
- Review 5 aspects of veterinary CPR
 - Preparedness and Prevention
 - Basic Life Support (BLS)
 - Advanced Life Support (ALS)
 - Monitoring
 - Post-Cardiac Arrest Care

→ Gain familiarity with updated guidelines

Know where to find CPR resources

College of Veterinary Medicine

LINOIS

RECOVER Guidelines

- Reassessment Campaign on Veterinary Resuscitation (RECOVER)
- Need for <u>specific, evidence-based, consensus guidelines</u> for vet CPR
- Prior to these guidelines:
 - < 7% of dogs with CPA survived until discharge vs. 20% of humans

Survival for dogs/cats with CPA during anesthesia ~47%

Arrest

Reversal

CPR Emergency Drugs and Doses

	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
	Weight (Ib)	5	10	20	30	40	50	60	70	80	90	100
DRUG	DOSE	ml	ml	ml	ml	ml	ml	ml	ml	ml	ml	ml
Epi Low (1:1000; 1mg/ml) every other BLS cycle x3	0.01 mg/kg	0.03	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Epi High (1:1000; 1 mg/ml) for prolonged CPR	0.1 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Vasopressin (20 U/ml)	0.8 U/kg	0.1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
Atropine (0.54 mg/ml)	0.04 mg/kg	0.2	0.4	0.8	1.1	1.5	1.9	2.2	2.6	3	3.3	3.7
Amiodarone (50 mg/ml)	5 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Lidocaine (20 mg/ml)	2 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Naloxone (0.4 mg/ml)	0.04 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Flumazenil (0.1 mg/ml)	0.01 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Atipamezole (5 mg/ml)	100 цg/kg	0.06	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
External Defib (J)	4-6 J/kg	10	20	40	60	80	100	120	140	160	180	200
Internal Defib (J)	0.5-1 J/kg	2	3	5	8	10	15	15	20	20	20	25

RECOVER Guidelines

• HOT OFF THE PRESS!

SPECIAL ARTICLE

Veterinary Emergency

2024 RECOVER Guidelines: Updated treatment recommendations for CPR in dogs and cats

Jamie M. Burkitt-Creedon DVM, DACVECC¹ Manuel Boller Dr med vet, MTR, DACVECC^{2,3} Daniel J. Fletcher PhD, DVM, DACVECC⁴ Fenjamin M. Brainard VMC, DACVA, DACVECC⁵ Figure Gareth J. Buckley MA, VetMB, DACVECC, DECVECC⁶ Steven E. Epstein DVM, DACVECC¹ Firk D. Fausak MSLIS, RVT⁷ Kate Hopper BVSc, PhD, DACVECC¹ Selena L. Lane DVM, DACVECC⁸ Filzabeth A. Rozanski DVM, DACVECC, DACVIM⁹

RECOVER Guidelines

• 5 areas reviewed

- Preparedness and Prevention
 Basic Life Support (BLS)
 Advanced Life Support (ALS)
 Monitoring
- Post-Cardiac Arrest Care

• Time sensitive, coordinated response improves outcome

- Time sensitive, coordinated response improves outcome
- Equipment organization and cognitive aids
 - Readily available
 - Standardized + regularly audited supplies
 - Cognitive aids

- Time sensitive, coordinated response improves outcome
- Equipment organization and cognitive aids
- CPR training
 - Didactic and practical components with feedback (self and external)
 - Refresher courses/mocks at least every 6 months*

- Time sensitive, coordinated response improves outcome
- Equipment organization and cognitive aids
- CPR training

- Time sensitive, coordinated response improves outcome
- Equipment organization and cognitive aids
- CPR training
- Team dynamics
 - Anyone can be the team leader!
 - Assign tasks
 - Enforcing rules and procedures
 - Intermittently summarizing code
 - Soliciting input

Closed loop communication ILLINOIS

College of Veterinary Medicine

- Time sensitive, coordinated response improves outcome
- Equipment organization and cognitive aids
- CPR training
- Team dynamics
- Post-CPR debriefing
 - Avoid blame, opportunity to discuss areas for improvement
 - Root cause analysis

Basic Life Support (BLS)

• BLS:

- Recognition of CPA
- Airway
- Breathing
- Compressions
- ABC vs CAB?
- Faster initiation improves outcomes
 - Initiate compressions as soon as CPA is identified <u>or suspected</u>

- Non-responsive and apneic
 - Shake and shout

- Non-responsive and apneic
- Auscultation
 Stethoscope
 Esophageal

- Non-responsive and apneic
- Auscultation
 Stethoscope
 Esophageal
- Absent Pulse
 Doppler
 Arterial line
 Palpation
 SpO₂ wave

- Non-responsive and apneic
- Auscultation
 Stethoscope
 Esophageal
- Absent Pulse
 Doppler
 Arterial line
 Palpation
 SpO₂ wave

Recognition

- Non-responsive and apneic
- Auscultation
 Stethoscope
 Esophageal
- Absent Pulse
 Doppler
 Arterial line
 Palpation
 SpO₂ wave

ECG
 Asystole
 PVT
 V. Fibrillation
 PEA

ETCO₂
 Apnea
 Decrease

Recognition

- Non-responsive and apneic
- Auscultation Absent Pulse • ECG • $ETCO_2$ Stethoscope Doppler Apnea Asystole Esophageal Arterial line Decrease **PVT** Palpation V. Fibrillation SpO₂ wave PEA
- No more than 5-10 seconds to assess
- When in doubt \rightarrow START CPR

- How do you position the patient?
- Where do you place your hands?
- How do you position your hands?
- What is your form?
- How deep to compress?
- What rate?

- How do you position the patient?
 - Lateral recumbency
 - Greater LV pressures/aortic flow
 - Higher ROSC rates
 - L or R lateral is okay
 - Dorsal recumbency
 - Wide chested dogs (bulldogs)

Chest Compressions

- Where do you place your hands?
 - Depends on conformation
 - Widest part of the chest
 - Over the heart
 - Mid-sternum
 - Cardiac vs thoracic pump
 - Theories

LLINOIS

College of Veterinary Medicine

• Both dynamics likely at play

Burkitt-Creedon et al. *JVECC* 34 Suppl 1, 2024 https://www.petmd.com/dog/general-health/how-to-perform-cpr-on-a-dog

- How do you position your hands?
 - Medium or large patient
 - Palms face downward and stacked
 - Fingers interlaced

Chest Compressions

★ • How do you position your hands?

- Small patient
 - (A) Circumferential 2 thumb technique
 - (B) One hand, thumbs to fingers, with dorsal support

(A)

(C)

• (C) One hand, palm compression, with dorsal support

(B)

- What is your form?
 - Above patient standing or kneeling
 - Align shoulders, elbows, wrists
 - Align arms with compression point
 - Align lower body
 - Bend at the hips
 - Core muscles

- How deep to compress?
 - In lateral recumbency \rightarrow 1/3 to 1/2 depth
 - \star In dorsal recumbency \rightarrow 1/4 depth

- What rate?
 - 100 120 bpm
 - Full recoil
 - Avoid leaning

Chest Compressions

Lateral recumbency
 1/3 - 1/2 depth (lateral)
 100-120/min
 Full recoil

Airway

- Not yet intubated
 - Single-rescuer
 - Quickly check patency of airway
 - Start compressions
 - Multi-rescuer
 - Start compressions immediately
 - Intubate as soon as possible

Do not delay compressions

https://recover.flywheelsites.com/veterinary-professionals/

Airway

- \star Not intubated
 - Breaths via tight fitting face mask and manual resuscitator
 - No facemask?
 - Minimal risk to human Mouth to snout
 - Risk to human Compressions only
 - Compression : ventilation = 30:2

https://www.aliexpress.us/item/3256804246653738.html?gatewayAdapt=glo2usa4itemAdapt

Airway

- \star Not intubated
 - Breaths via tight fitting face mask and manual resuscitator
 - No facemask?
 - Minimal risk to human Mouth to snout
 - Risk to human Compressions only
 - Compression : ventilation = 30:2

Airway

- Intubated
 - Is your patient actually intubated?
 - Is the ETT patent?
 - Is it positioned correctly?

 $ETCO_2 < 12mmHg \rightarrow Confirm ETT placement$

Basic Life Support (BLS)

Breathing

✓ 10 breaths/min

✓ 1 sec inspiration

- Visible chest rise, but not excessive
- 100% oxygen
- Anesthesia machine:
 - During compressions: 30-40 cm
 - During pauses: < 20 cmH2O

Basic Life Support (BLS)

- Pause after each cycle:
 - Check ECG and femoral pulse
 - < 10 seconds
- Only interrupt mid-compression for suspected ROSC:
 - Rapid increase in ETCO₂ (35 mmHg)
 - Pulse distinct from compressions

CPR Initial Assessment Algorithm

Burkitt-Creedon et al. JVECC 34 Suppl 1, 2024

- Monitoring
- IV access
- Drugs
- Defibrillation

Start BLS	Start ALS					
2 full minutes, no pauses Chest Compressions 100-120 / minute	Monitoring ECG ETCO ₂ 18+ mmHg					
2 Ventilation every 6 seconds	Reversals					

Pick 2 pieces of monitoring equipment for CPR...

ECG and Capnograph

Monitoring

- ECG
 - Check rapidly during inter-cycle pauses
 - Do not stop to check
 - Guides therapy
 - <u>Caution in interpretation</u>: disconnected electrodes, motion artifact, PEA

Monitoring

- Capnography (ETCO₂)
 - ETT placement
 - ETCO₂ correlates with pulmonary blood flow if ventilation is stable
 - Indicates efficacy of compressions/CO \rightarrow Aim for ETCO₂ >18 mmHg
 - Early indicator of ROSC

Monitoring

• Plasma potassium concentration should be measured in all animals undergoing CPR

IV Access

- Routes of drug administration
 - Intravenous
 - Intraosseous
 - Intratracheal
 - Only if IV not available
 - Epinephrine, Atropine, Vasopressin
 - Diluted in saline
 - Given via catheter distal to ETT (Close to carina)

Drugs

- Epinephrine
 - α Vasoconstriction
 - Centralize blood flow
 - Increase venous return
 - β Myocardial contractility and rate
 - Positive inotrope and chronotrope
 - \uparrow myocardial workload & O₂ consumption
 - Myocardial ischemia \rightarrow arrhythmias
 - Increase ROSC

Dose: 0.01 mg/kg IVEvery other cycle (3-5 min)

Drugs

• Epinephrine

Drugs

• Vasopressin

- V1A Vasoconstriction
 - Centralize blood flow
 - Increase venous return
- More effective in acidic environment
- Lacks β effects $\textcircled{\odot}$
- Superior to epinephrine?
 - Mixed evidence
 - Equivalent, maybe more benefit

Dose: 0.8 U/kg IV Alternative to epinephrine

Drugs

- Atropine
 - Parasympatholytic
 - Little evidence of benefit in humans
 - Little evidence of harm
 - > 0.1 mg/kg is detrimental
 - Give once if high vagal tone is suspected
 - Brachycephalics
 - Opioids, dexmedetomidine
 - Vagal reflexes

Drugs

- Reversal agents
 - Discontinue all drugs \rightarrow <u>Turn ISO off</u>
 - Possible reversals: Naloxone, Flumazenil, Atipamezole
 - Naloxone after other interventions in place
 - Other agents "May be considered"
 - *Atipamezole* Potential for harm, no data

Drugs

- Antiarrhythmics
 - Administered for refractory shockable rhythms
 - Lidocaine
 - Dogs
 - Dose: 2 mg/kg IV

- Cats
- Dose: 5 mg/kg IV

Drugs

- Antiarrhythmics
 - Administered for refractory shockable rhythms
 - Esmolol
 - Dogs and cats
 - Co-administered during refractory shockable rhythms
 - Counteracts pro-arrhythmogenic β effects of other CPR drugs (epinephrine)
 - Dose: 0.5 mg/kg IV over 3-5 min \rightarrow CRI 50 ug/kg/min

Drugs

Sodium bicarbonate

- Acidemia is common
- Consider with prolonged CPR (>15 min)
- Especially if pH < 7.0

Dose: 1 mEq/kg IV Once during prolonged CPR

Defibrillation

- What does defibrillation do?
 - "Quiets the room"

Goldberger AL, Goldberger ZD, Shvilkin A. Pacemakers and implantable cardioverter–defibrillators: Essentials for clinicians. https://www.sciencedirect.com/science/article/pii/B9780323401692000226. May 12, 2017. Accessed January 15, 2019.

Defibrillation

- 2 Types of defibrillators
 - Monophasic
 - Unidirectional, higher current
 - Biphasic
 - 'To and from', lower current
 - 2 J/kg
 - Recommended

- If first attempt fails, double the dose for the second and subsequent attempts
- Possible myocardial damage with high current

Defibrillation

- Precordial thump
 - Mechanical defibrillation
 - The 'cost-effective' mostly ineffective version of the defibrillator
 - Only used if electrical defibrillator is not available

Defibrillation

- Proper technique
 - Dorsal recumbency \rightarrow Paddles across the heart
 - Defibrillator paste or gel No alcohol!
 - "CLEAR"
 - Between 2 minute compression cycles
 - Immediately resume compressions after shocking

Defibrillation

- Defibrillation as part of the process
 - Shockable rhythm
 - Compressions for 2 min while preparing defibrillator
 - Shock during pause
 - Immediately resume compressions for 2 min
 - Assess rhythm during pause
 - Still shockable?
 - Double the shock dose
 - Epinephrine or vasopressin
 - Antiarrhythmics: Lidocaine (dog), amiodarone (cat)
 - Esmolol: Consider LD and CRI

Amiodarone in cats

Lidocaine in dogs

Esmolol

Post-Arrest Care

- Many patients will re-arrest
- Causes of death:
 - Multiple organ failure
 - Cardiogenic shock
 - Anoxic brain injury
- Goals:
 - Normotension
 - Normocapnia
 - Normoxemia
 - Protect cerebral function

Putting it all together

- Rapid recognition + initiation of compressions
- Team work + communication
- Uninterrupted 2 minute cycles of BLS/ALS
 - Compressions \rightarrow 100-120/min, 1/3-1/2 depth, recoil
 - Airway \rightarrow ensure intubated + patent ETT
 - Ventilation → 10 bpm, 1 sec inspiration
 - Epinephrine 0.01 mg/kg +/- Atropine 0.04 mg/kg
- Rapidly check ECG for shockable rhythm
- Monitor ECG and ETCO2

Questions, Comments, Discussion?

SPECIAL ARTICLE

2024 RECOVER Guidelines: Updated treatment recommendations for CPR in dogs and cats

Jamie M. Burkitt-Creedon DVM, DACVECC¹ Manuel Boller Dr med vet, MTR, DACVECC^{2,3} Daniel J. Fletcher PhD, DVM, DACVECC⁴ Benjamin M. Brainard VMC, DACVA, DACVECC⁵ Gareth J. Buckley MA, VetMB, DACVECC, DECVECC⁶ Second Steven E. Epstein DVM, DACVECC¹ Erik D. Fausak MSLIS, RVT⁷ Kate Hopper BVSc, PhD, DACVECC¹ Selena L. Lane DVM, DACVECC⁸ Elizabeth A. Rozanski DVM, DACVECC, DACVIM⁹ Jacob Wolf DVM, DACVECC¹⁰